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I. INTRODUCTION

Turbulent transport in high temperature plasmas is one
of the main issues in modern plasma physics. Microscopic
fluctuations are induced owing to the gradients of plasma
pressure and magnetic field so as to enhance the cross-field
transport of energy far beyond the level that is determined by
the binary collision of charged particles. In the development
of theory and direct nonlinear simulation !DNS" of turbulent
transport in toroidal plasmas, it has been clarified that the
plasma turbulence in the range of drift wave frequency,
which we abbreviate “drift waves” in this article, plays key
roles.1,2 What is fascinating is that the zonal flow,3 which is
constant on magnetic surface but changes rapidly across
magnetic surfaces, is induced by turbulent fluctuations and,
at the same time, suppresses the turbulent transport. The gen-
eration of zonal flow has been confirmed by DNS !see, e.g.,
Refs. 4 and 5 and the review in Ref. 6 for a full description".
Zonal flow in the core plasma has been observed in experi-
ment very recently.7 The problem of zonal flow generation
by pressure gradient has a wide and deep impact on the
plasma physics. The zonal flow is associated with the vortic-
ity which is almost constant on magnetic field. That is, a
global axial vector field is generated. The problems of the
generation of global axial vector field from the gradient of
scalar field include the geodynamo solar magnetic field gen-
eration or astronomical jet formation.8,9 The turbulence and
zonal flow in toroidal plasmas provide an opportunity to in-
vestigate this class of problems with theory, DNS, and ex-
perimental observation, simultaneously. Intensive studies of
the system of zonal flow and drift wave turbulence have been
performed. The achievements so far have been summarized
in the review in Ref. 6.

One of the key issues is the mechanism that regulates the

structure of the induced zonal flows. The saturation mecha-
nisms of zonal flow have been discussed in the literature;
while the turbulence is often completely quenched for
weakly unstable cases at the collisionless limit,10–13 station-
ary states with finite amplitudes of both the zonal flow and
turbulent fluctuations are realized when the plasmas are in
highly unstable states. The possibility of secondary instabili-
ties has been pointed out,14–18 and the condensation of mi-
cromodes into global modes has been studied by direct non-
linear simulations !DNS".19 Regarding the theoretical
formulation of nonlinear processes, nonlinearity in the self-
interaction of zonal flows has also been investigated. Re-
search has included the pursuit of the possibility that the
zonal flows evolve into a kink-soliton-like structure,20 the
parametric evolution of a plane drift wave,21 and the theory
for the BGK !Bernstein–Greene–Kruskal" solution has also
been developed.22–24 The importance of random noise to tur-
bulence has been studied !e.g., Refs. 25 and 26", and influ-
ences of turbulent noise on zonal flow has also been
studied.3,24,27 Drift wave spectrum was analyzed in the pres-
ence of zonal flow,28 and dynamical evolution has also been
studied.29 Although these models provide useful understand-
ing, they are not free from limitations. For instance, the ac-
cessibility to the kink-soliton-like solution from a small ini-
tial perturbation in Ref. 20 is not clear; the drift waves often
develop into strong turbulence so that the assumption that the
plane drift wave will be coherent may be violated, and the
decorrelation time of the drift wave packet is often shorter
than the circumnavigation time of the packet in the zonal
flow trough. Theoretical efforts are still required for the
study of zonal flow structure in cases where drift waves have
short correlation times. In addition, it is known that the tor-
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oidal geometry is crucial in determining the structure of tur-
bulence and flow.13,30–33

In this article, we analyze the nonlinear state of zonal
flow which is driven by fluctuations in the drift-wave-
frequency range in toroidal plasmas, in the case that the au-
tocorrelation times of drift waves are much shorter than that
of the zonal flow. !The study of such a case is motivated by
the DNS of core plasmas for highly unstable cases. It is
clearly shown in Ref. 34 that the half width at half maximum
of the spectral intensity of the zonal flow is much narrower
than that of turbulence." It was shown, for given fluctuation
amplitude in toroidal plasmas, that %!r !the transport of per-
pendicular momentum in the radial direction" shows a non-
linear saturation with respect to the zonal flow shear, while
%&r !the transport of parallel momentum in the radial direc-
tion" does not.32 That is, the drive of the zonal flow starts to
decrease at high velocity, but the damping due to the turbu-
lent viscosity of parallel flow does not. Therefore, the zonal
flow evolves into a nonlinear stationary state, and the stable
coherent structure is obtained. In this article, the higher-order
corrections by zonal flow on the zonal flow drive is renor-
malized, and the driving term at an arbitrary magnitude of
zonal flow vorticity is derived. Based on the nonlinear form
of the zonal flow growth rate, the steady state solution is
obtained. In the collisionless limit, the turbulence level is
shown to vanish while the zonal flow remains at finite am-
plitude, when instability is weak. The critical condition for
the onset of drift wave turbulence in the presence of zonal
flow is derived. This gives a theoretical explanation for the
Dimits shift phenomena. The turbulent transport, including
the zonal flow effects, is obtained. The partition ratio of fluc-
tuating field energy among the drift wave turbulence and
zonal flow is also obtained. A comparison with DNS is also
made.

II. THE MODEL
A. Formulation based on drift wave action

We study the system of the drift-wave !DW" turbulence
and zonal flow !ZF" in inhomogeneous and magnetized
plasma. The model dynamical system for the drift wave ac-
tion Nk and the zonal flow velocity VZ has been studied.

20

The drift wave action Nk has been introduced as

Nk = !1 + k!
2 "s

2"2'#̃k'2, !1"

where #̃k is the k-Fourier component of electrostatic pertur-
bation of drift waves, k! is the wavenumber of drift waves
perpendicular to the main magnetic field and "s is the ion
gyroradius at electron temperature. In this article, the analy-
sis is developed following the framework which utilizes the
coupled equations for Nk and VZ. !For the survey of methods
of analysis for zonal flows, see Ref. 6."

The growth of the zonal flow in the presence of the
drift-wave turbulence has been discussed by use of the time
scale separation. The autocorrelation times of the drift wave
fluctuations are assumed to be much faster than the evolution
time of the zonal flow. In the slow time scale, the evolution
of the zonal flow and the drift wave action is governed by20

#

#t
U =

#2

#r2
c2

B2 ( d2k k!kr
!1 + k!

2 "s
2"2
N̂k − $dampU , !2"

and by the eikonal equation

#

#t
Nk +

#%k

#k
·
#Nk
#x

−
#%k

#x
·
#Nk
#k

= 0, !3"

where U is the vorticity of the zonal flow

U = #VZ/#r , !4"

r is the minor radius, N̂k is a slow modulation of Nk, which is
induced by VZ, and $damp denotes the damping rate of zonal
flow by other processes.

We study the case that the zonal flow retains the coher-
ent structure in a time much longer than the decorrelation
time of the drift wave fluctuations. This “coherent regime” is
one of the characteristic situations of the DW-ZF system,6
and is observed in various simulation conditions.13 Equation
!3" is solved by expansion with respect to the vorticity of the
zonal flow as

N̂k = N̂k
!1" + N̂k

!2" + N̂k
!3" ¯ , !5"

where N̂k
!j" is the jth order term of U. !An explicit form of

expansion parameter is explained later." Substitution of Eq.
!5" into Eq. !2" provides

#

#t
U =)

m

&

G!m" − $dampU , !6a"

where the mth order term with respect to U in the Reynolds
stress is expressed as

G!m" =
#2

#r2
c2

B2 ( d2k k!kr
!1 + k!

2 "s
2"2
N̂k

!m". !6b"

A linear response has been obtained from Eq. !3" as20

N̂k
!1" = k!U R!qr,'"

#Nk
#kr

. !7"

Here

R!qr,'" =
i

' − qrvgr + i(%k
!8"

is the response function, (%k is the nonlinear broadening of
drift waves,

vgr = #%/#kr !9"

is the group velocity, and the zonal flow has a slow depen-
dence as

exp!iqrr − i't" !10"

!qr is the radial modenumber of zonal flow".
The higher order responses with respect to U, N̂k

!2", N̂k
!3",

..., can be calculated from
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N̂k
!n"!qr + qr!" = U R!qr + qr!,'"k!

#

#kr
N̂k

!n−1"!qr!" , !11"

where N̂k
!n−1"!qr!" represents the qr!-Fourier component. The

group velocity vgr is an antisymmetric function of kr for drift
waves in this article. Therefore, R!qr ,'" has a symmetry
with respect to kr. The contributions from the even order
terms N̂k

!2m" !m=1, 2, 3, ..." are small from the consideration
of symmetry, and the drive of ZF comes from the odd order
terms N̂k

!2m+1" !m=0, 1, 2, ...". In addition, when qr is chosen
in the regime where the zonal flow has maximum growth
rate, the higher-harmonics components with nqr !n=3, 4, ..."
have large damping rates.6,35 Therefore we keep
2qr-component and have a relation

N̂k
!n" = U2k!

2R*!qr,'"
#

#kr
*R!2qr,'!"

#N̂k
!n−2"

#kr
+ , !12"

where N̂k
!n" is the abbreviation of N̂k

!n"!qr".

B. Linear response

The first-order term gives the diffusion-like form

$Z = Drrqr
2 = − Drr#

2/#r2 !13"

in Eq. !2" with

Drr = −
c2

B2 ( d2k
R!qr,'"k!

2kr
!1 + k!

2 "s
2"2

#Nk
#kr

, !14"

i.e., the zonal flow growth.3 In a case that the decorrelation
rate of zonal flow is large, (%k)qrvgr,

R!qr,'" , 1/(%k. !15"

The partial integral of Eq. !14" gives an evaluation

Drr =
c2

B2 ( d2k k!
2

!1 + k!
2 "s

2"2(%k
Nk. !16"

Next, the most unstable wavenumber of the zonal flow is
considered. The zonal flow growth rate $Z does not continue
to increase at larger qr when the dispersion effect of the beat
drift waves on the zonal flow is introduced. A finite-qr cor-
rection to R!qr ,'" is evaluated in the large (%k limit by
expanding R!qr ,'" to

R!qr,'" =
1

(%k
*1 − *qrvgr

(%k
+2 + ¯+ , !17"

and $Z is written as

$Z = Drrqr
2!1 − qr

2/K0
2" , !18"

where

K0
2 = (%k

2!vgr"−2 !19"

represents the characteristic scale where the Doppler-shift of
drift waves suppresses the zonal flow instability. An explicit
form of K0

2 for the case of tokamak plasmas is given in Ref.
21. It should also be noted that expression !2" is drawn with
the condition that qr*kr. The analysis in the case of qr-kr
was reported based on a modulational instability, showing

that the zonal mode drive vanishes if qr+kr.
35 We have

K0 = min!kr,(%k/vgr" . !20"

The damping term $dampU includes the collisional damp-
ing term ,dampU. An additional damping mechanism exists.
The E-B flow in toroidal plasma is associated with the
secondary flow. As is shown in Refs. 30–32, the viscous
damping of the secondary flow due to toroidicity governs the
damping rate of the zonal flow, in addition to the conven-
tional collisional damping. The damping rate by this process
is rewritten as31

$damp = .&!1 + 2q2"qr
2, !21"

where .& is the turbulent shear viscosity for the flow along
the field line and q is the safety factor. !The coefficient 1
+2q2 is replaced by 1+1.6q2 /./ in the collisionless limit.36
This dependence on the collisionality is not considered for
simplicity." Combining this damping associated with parallel
flow, the damping rate is expressed as

$damp = ,damp + .&!1 + 2q2"K2. !22"

And an explicit form of ,damp is given in, e.g., Ref. 6,

,damp ,
,ii
/

!23"

in the banana regime.
Combining these results, the linear terms in Eq. !2" are

rewritten as

#

#t
U + Drr* #2

#r2
U + K0

−2 #4

#r4
U+ − .&!1 + 2q2"

#2

#r2
U

+ ,dampU = 0. !24"

This equation predicts a necessary condition for the zonal
flow growth with the wavenumber qr at which the linear
growth rate of zonal flow takes the maximum value. The
zonal flow has a maximum growth rate at

qr = qr* =.1 − .

2
K0, !25"

where

. / .&!1 + 2q2"Drr
−1. !26"

The condition that the zonal flow has positive linear growth
rate is given as

1 − . + 2. ,damp
DrrK0

2 . !27"

Both the zonal-flow driving coefficient Drr and the shear
viscosity .& are given by drift wave spectrum Nk. The ratio
./.&!1+2q2"Drr

−1 is a function of the spectral shape of drift
wave turbulence and geometrical factor such as q, the in-
verse aspect ratio /, etc.
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C. Third-order correction

The third-order term of the deformed action is given as

N̂k
!3" = U2k!

2R*!qr,'"
#

#kr
*R!2qr,'"

#N̂k
!1"

#kr
+ . !28"

Substituting Eq. !28" into Eq. !6b", one obtains the third-
order term on the right-hand side !RHS" of Eq. !2" as

G!3" =
#2

#r2
c2

B2 ( U2d2k
k!
3kr

!1 + k!
2 "s

2"2
R*!qr,'"

#

#kr

-*R!2qr,'!"
#N̂k

!1"

#kr
+ . !29"

In a strong turbulence limit, (%k)qrvgr, which gives an es-
timate Eq. !16" through partial integral, the RHS of Eq. !29"
is evaluated as

G!3" = −
#2

#r2
c2

B2 ( U2d2k
k!
3

!1 + k!
2 "s

2"2
R*!qr,'"R!2qr,'!"

-
#N̂k

!1"

#kr
. !30"

The partial integral is performed once again. Noting the re-
lation

#

#kr
*R*!qr,'"R!2qr,'!"

!1 + k!
2 "s

2"2 + , −
H

(%k
2

kr"s
2

!1 + k!
2 "s

2"2
!31a"

with a coefficient

H =
2

1 + k!
2 "s

2 +
6qr

2

(%2"s
2
#vg

2

#kr
2 , !31b"

#where the second term on the RHS of Eq. !31b" is a finite
wavenumber correction$, we have an estimate of the third-
order term as

G!3" = −
#2

#r2
c2

B2 ( d2k*Hk!
2"s
2U2

(%k
2 + k!kr

!1 + k!
2 "s

2"2
N̂k

!1"

=
#2

#r2
D3U3, !32"

where the diffusion coefficient in the third-order term is
given as

D3 = −
c2

B2 ( d2k*Hk!
2"s
2

(%k
2 + k!kr

!1 + k!
2 "s

2"2
N̂k

!1". !33"

Comparing Eq. !33" with Eq. !16", we finally have an esti-
mate of the diffusion coefficient of the third-order term as

D3 ,
Hk!

2"s
2

(%k
2 Drr. !34"

The sign in the definition of D3 is chosen such that D3 is
positive when Drr is positive.

Taking into account Eqs. !24" and !32", Eq. !2" is written
in an explicit form as

#

#t
U + Drr* #2

#r2
U + K0

−2 #4

#r4
U+ − D3 #2

#r2
U3

− .&!1 + 2q2"
#2

#r2
U + ,dampU = 0 !35"

up to the third order with respect to U. The expansion pa-
rameter is Hk!

2"s
2U2 /(%k

2 in deriving Eq. !35".

D. Renormalization of higher order corrections

Equation !35" allows one to study the radial structure of
the nonlinear solution. The truncation at the third order may
not be appropriate if

Hk!
2"s
2U2 + (%k

2 !36"

holds. Therefore, the third-order formula is not relevant for
the study of the Dimits shift, where the fluctuation level is
very low so that (%k

2 is small. In order to study the case of an
arbitrary ratio of Hk!

2"s
2U2 /(%k

2, we must keep all order of U.
In this section, we discuss the renormalization of the driving
term )m=0

& G!2m+1". By the renormalization method, the sum-
mation provides a screened form of the Reynolds stress
which is extended to the parameters like Eq. !36". !See, e.g.,
Ref. 38 for details."

The radial wavelength of the zonal flow is taken as
20 /qr*, and is treated as a parameter in this section. By
employing this simplification, we derive a recurrence for-
mula between G!2m+1" and G!2m−1" in the following. The
!2m+1"th order term of Eq. !6b" is written as

G!2m+1" = − qr
2 c
2

B2 ( d2k
k!kr

!1 + k!
2 "s

2"2
N̂k

!2m+1" !37"

and is rewritten as

G!2m+1" = − qr
2 c
2

B2 ( d2k
k!
3kr

!1 + k!
2 "s

2"2
U2R*!qr,'"

#

#kr

-*R!2qr,'!"
#N̂k

!2m−1"

#kr
+ . !38"

In the case of the strong turbulence, Eq. !15", a similar
argument to Eq. !16" is employed for Eq. !38". Thus, per-
forming a partial integration twice, one has

G!2m+1" = qr
2 c
2

B2 ( d2k*Hk!
2"s
2U2

(%k
2 + k!kr

!1 + k!
2 "s

2"2
N̂k

!2m−1".

!39"

That is, one obtains a relation between G!2m+1" and G!2m−1" as

G!2m+1" , −
Hk!

2"s
2U2

(%k
2 G!2m−1". !40"

The result Eq. !40" indicates that the ratio
'G!2m+1" /G!2m−1"' diverges as (%k→0 for a fixed value of U.
However, such singular behavior does not occur. This is be-
cause the decorrelation between the drift wave packet and
the zonal flow is not given by (%k but by other processes,
when (%k approaches zero. Therefore we put
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G!2m+1" , −
Hk!

2"s
2U2

12
G!2m−1" as (%k → 0, !41"

where 1 is the decorrelation rate between zonal flow and
waves in the small (%k limit. One decorrelation process is
the Doppler shift, and qrvgr plays a role that limits the reso-
nance between zonal flow and drift waves. The other relevant
frequency is the bounce frequency %b of the drift wave
packet in the trough of the zonal flow,22

%b
2 =

2"s
2k!qr

1 + "s
2k!
2%kU . !42"

That is, 1 scales with max!%b ,qrvgr". The quantitative deter-
mination of the proportionality constant between 1 and
max!%b ,qrvgr" requires the detailed analysis of the turbulent
trapping regime, such as the granulation formalism.37 Thus
we choose here

1 = max!%b,qrvgr" . !43"

It should be noticed that Eq. !40" does not mean G!2m+1"

remains finite as (%k→0. It means that the ratio
'G!2m+1" /G!2m−1"' remains finite. In the limit where (%k=0
holds and the trapping of wavepacket occurs, the net driving
force of the zonal flow can vanish and the solution can be
given by BGK !Bernstein–Greene–Kruskal" solution. Within
the framework of the model of this article, Eq. !14" indicates
that G!1" vanishes !so does G!2m+1"" as (%k→0. Thus this
model provides renormalization in the case of finite (%k and
partly recovers the property in the limit of wave trapping.
Taking a Padé approximation, one has an interpolation for-
mula as

G!2m+1" , −
Hk!

2"s
2U2

(%k
2 + 12

G!2m−1". !44"

That is,

G!2m+1" , !− 1"m0 U2

(%k
2 + 12

Hk!
2"s
2 1

m
G!1". !45"

By use of the formula !44", the summation )m=0
& G!2m+1" can

be calculated. We have the renormalized driving term for the
zonal flow as

)
m=0

&

G!2m+1" =
G!1"

1 +
Hk!

2"s
2U2

(%k
2 + 12

. !46"

In Eq. !46", the nonlinear correction up to all orders are
included. The evolution equation for the zonal flow Eq. !6a"
is then written as

#

#t
U =

qr
2Drr

1 +
Hk!

2"s
2U2

(%k
2 + 12

U − !.&!1 + 2q2"qr
2 + ,damp"U . !47"

III. NONLINEAR RADIAL EIGENMODE
IN COLLISIONLESS LIMIT

In this section, we study the nonlinear eigenmode of
zonal flow for given drift wave fluctuations by keeping the
third-order nonlinear term. We take a limit of

,damp→ 0, !48"

because the role of the nonlinear stabilization term in Eq.
!35" is studied. We use normalized variables

x = r/L, 2 = t/tZ, u = U/U0, !49"

where

L−2 = K0
2!1 − .", tZ = Drr

−1K0
−2!1 − ."−2, !50"

U0
2 = DrrD3

−1!1 − ." .

Equation !35" is rewritten as !,damp→0"

#

#2
u +

#2

#x2
u −

#2

#x2
u3 +

#4

#x4
u = 0. !51"

The short wavelength components with qr
2L2+1 are stabi-

lized by the higher-order derivative term. The flow is gener-
ated in the long wavelength region of

qr
2 * K0

2!1 − ." , !52"

and the zonal flow energy is saturated by the nonlinearity and
by the dissipation through higher-order derivatives.

We investigate a case that the flow is generated from the
state with small noise level where no net flow exists,

( dxu = 0. !53"

Conservation of total momentum holds for the periodic
boundary condition and the flow evolves satisfying the con-
dition 2dxu=0. Stationary solution of Eq. !51" in the domain
0*x*d, for the periodic boundary condition, is given by an
elliptic integral as

( !1 − 2u2 + u4 − 32"−1/2du = ±
x
.2 , !54"

where 3 is an integral constants satisfying 043*1 and is
determined from the periodicity

(
−uc

uc
!1 − 2u2 + u4 − 32"−1/2du =

d
2.2n , !55a"

where

uc = .1 − 3 , !55b"

and n=1,2 ,3 ,….
The temporal evolution of Eq. !51" is solved numeri-

cally. Starting from an initial condition with small random
values, a stable steady state is reached. It is shown that the
growth is dominated by the component which has the largest
linear growth rate. That is, the integer n is given by the one
which is closest to
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d/n = 4.20 . !56"

Figure 1 illustrates the stable stationary state. The peak value
of u!x" is given as uc,0.95. Compared to a simple sinu-
soidal function !eigenfunction of linear operator", the result
in Fig. 1 has much weaker curvature at the peak and is closer
to a piecewise constant function. The result Eq. !56" shows
that the characteristic wavelength of the zonal flow is con-
trolled by K0, the parameter dependence of which is ex-
pressed in Eq. !20".

The stationary state is realized by the balance between
the drive of zonal flow through d5!r /dr and the damping
through d5&r /dr. !5 is the Reynolds stress." The d5!r /dr
term is composed of the second and third terms on the left-
hand side !LHS" of Eq. !35" !having coefficients Drr and D3".
The d5&r /dr term corresponds to the fourth term on the LHS
of Eq. !35", having coefficients .&. When the zonal flow
amplitude is small and Eq. !27" holds, the drive by d5!r /dr
exceeds the damping by d5&r /dr so that the zonal flow
grows. When the ZF amplitude increases, the nonlinear term
in d5&r /dr becomes effective, and d5!r /dr starts to de-
crease. At the amplitude of zonal flow where d5!r /dr
+d5&r /dr=0 holds, the zonal flow reaches the stationary
state.

IV. SELF-CONSISTENT STATE

Based on the analysis of the stationary coherent structure
of zonal flow, we study the self-consistent state for the
DW-ZF system. The condition for the excitation of drift
waves in the presence of zonal flow and the energy partition
of between the drift wave and zonal flow is discussed. Then
the transport coefficient by drift wave turbulence, where the
effect of zonal flow is included, is derived.

A. Model of coupled equations
1. Low-degree-of-freedom model

The self-consistent state of zonal flow and drift wave has
been studied theoretically by solving the evolution of the
spectrum of drift waves.28 The studies have shown that a
low-degree-of-freedom model, such as predator-pray model,
is useful in giving a qualitative understanding of the self-
consistent state. In addition, the study of the nonlinear radial

wave form in Sec. III gives us the result that the structure is
well represented by a few parameters like amplitude and pe-
riodicity length.

Based on the results in Sec. III, we choose the periodic
length 20qr

−1 of the zonal flow as

qr"i ,
.1 − .

2
K0"i, !57"

and employ the dynamical equation in which qr is treated as
a parameter. Under this circumstance, the equation for the
amplitude of the zonal flow is then given as Eq. !47". By use
of this simplification, both the collisionless case and the
weakly collisional case are studied here.

The back interaction of the zonal flow on drift wave
turbulence has been discussed in detail. In order to show the
argument with analytic transparency, we choose a simplest
model for the evolution of drift wave amplitude after Refs. 3
and 39 as

#

#t
#̂2 = $L#̂

2 − 6#̂2Ŵ − (%#̂2, !58"

where $L is the growth rate of the turbulence energy and #̂ is
the normalized fluctuation amplitude

#̂2 = * k!
2 Ln
k!

+23 e#̃T 32, !59"

and '#̃' is an amplitude of drift wave fluctuations, $L is the
linear growth rate, the nonlinear damping rate (% shows the
effect of the nonlinear interactions within drift wave turbu-
lence, the rate 6 that satisfies

2Drrqr
2 = 6#̂2 !60"

is used according to the convention of Ref. 3, and

Ŵ = !U/%*"2 !61"

is the normalized square amplitude of the zonal flow vortic-
ity.

With a similar procedure, Eq. !47" is rewritten as

#

#t
Ŵ =

6#̂2

1 +
Hk!

2"s
2%*

2

(%k
2 + 12

Ŵ
Ŵ − !.6#̂2 + 2,damp"Ŵ , !62"

where .&!1+2q2"qr
2 term is rewritten as .6#̂2 by use of Eqs.

!26" and !60".
Equations !58" and !62" form a set of coupled dynamical

equations for the DW-ZF system in a reduced model.

2. Evaluation of the nonlinear damping term

We here estimate (%k in various cases. In the strong
turbulence limit of drift wave fluctuations, (%k is estimated
as1

(%k , B−1k!
2 '#̃' . !63"

It is rewritten as

FIG. 1. Stationary state of the normalized solution u!x" for the case of d
=80. Radial length x and vorticity u are normalized values.
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(%k , %*#̂ !64"

by use of the normalized drift wave amplitude. In a weak
turbulence limit, one has

(%k , %*#̂
2. !65"

3. Coupled dynamical equations

The relation between the fluctuation level and nonlinear
decorrelation rate, Eq. !64" or Eq. !65", closes the set of
equations. The nonlinear damping rate by drift wave turbu-
lence is chosen here as Eq. !64" for the strong turbulence.
This choice is motivated by the fact that an explicit formula
is obtained in the presence of collisional damping and renor-
malized nonlinear damping for zonal flows. !Of course, the
strong turbulence limit may not be valid near the Dimits shift
boundary in the absence of collisional damping of zonal
flow. The limit of ,damp→0 is explained in Sec. IV B 3." By
this simple model, Eqs. !58" and !62" take form as

#

#t
#̂2 = $L#̂

2 − 6#̂2Ŵ − %*#̂
3, !66"

and

#

#t
Ŵ =

6#̂2

1 +
Hk!

2"s
2%*

2

%*
2#̂2 + 12

Ŵ
Ŵ − !.6#̂2 + 2,damp"Ŵ , !67"

respectively. The set of equations !66" and !67" describes the
partition of fluctuation energy into drift waves and zonal
flows.

B. Solution and energy partition
1. Domain of solutions

Equation !67" gives the condition for the stationary state
for the zonal flow. Putting # /#t=0 in Eq. !67", one has

Hk!
2"s
2%*

2

%*
2#̂2 + 12

Ŵ =
6#̂2

.6#̂2 + 2,damp
− 1, !68"

or

Ŵ = 0. !69"

From Eq. !68", one sees that the nontrivial solution Ŵ$0 is
allowed for

#̂2 = #̂th
2 , !70"

where

#̂th
2 =

2,damp6
−1 − g + .w + .!2,damp6

−1 − g + .w"2 + 8!g + !1 − ."w",damp6−1

2!1 − ."
, !71"

and abbreviations are

g = !1 − ."12%*
−2, w = Hk!

2"s
2%*

2Ŵ . !72"

The zonal flow grows as #̂2+#̂th
2 , and damps for #̂2*#̂th

2 .
Figure 2 illustrates #̂th

2 as a function of the zonal flow vor-
ticity for various values of collisional damping.

Equation !71" provides various limiting results. In a limit
of small zonal flow vorticity, Ŵ→0, Eq. !71" takes a form

#̂th
2 =

2,damp
!1 − ."6

, !73"

which shows that the fluctuation level is regulated by the
damping rate of the zonal flow. This recovers the previous
result, although a screening factor by the return flow is in-
cluded in Eq. !73".

The other limit of interest is the collisionless limit,
,damp/6→0. In this case, the stationary state of Eq. !62"
provides

(%k
2

%*
2 =

.Hk!
2"s
2

!1 − ."
Ŵ −

12

%*
2 . !74"

This result has two specific features. First, (%k vanishes
!i.e., #̂ vanishes" at a critical vorticity of zonal flow,

U = Uc, !75a"

where

Uc
2 =

!1 − ."
.Hk!

2"s
212, !75b"

i.e.,

FIG. 2. The diagram for the zonal flow growth on !Û , #̂" plane. Solid line
indicates the neutral condition for the weakly collisional case, and the
dashed line is for the collisionless case.
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Uc = max*2!1 − ."
.H

,.2!1 − ."
.H

kr"s+qrVd, !75c"

where use was made of Eqs. !42" and !43". !Vd is the dia-
magnetic velocity." On the RHS of Eq. !75c", the first term in
parentheses is given when 1 is evaluated by %b and the sec-
ond one is given when 1 is evaluated by qrvgr. Equation
!75a" means that the growth of zonal flow remains marginal
at this critical vorticity even in the limit of small drift wave
fluctuation level. This nonlinear balance at the limit of weak
drift wave fluctuations is related to the Dimits shift problem,
and is discussed in later sections. Note that Eqs. !74" and
!75a"–!75c" hold without depending on the assumption of
strong or weak turbulence limit.

Next, Eq. !74" provides a law of power partition between
zonal flow and drift waves. In a limit of strong fluctuations
and flow, U)Uc, Eq. !74" gives a relation

(%k
2

%*
2 =

.Hk!
2"s
2

!1 − ."
Ŵ . !76a"

This relation is rewritten in the limit of strong turbulence in
a dimensional form as

U =
k!
2 cs

..Hk!

e#̃
T
. !76b"

2. Stationary solutions

We next consider the balance between the drift wave
amplitude and that of the zonal flow. The stationary state of
drift wave turbulence is given from Eq. !66"

#̂ =
$L
%*
−

6

%*
Ŵ , !77"

or

#̂2 = 0. !78"

Combining Eq. !71" with Eq. !77", the self-consistent
solution is obtained. Figure 3 illustrates the self-consistent

solution schematically. Owing to the kink of the boundary of
Eq. !71" at U,Uc, there arise three regions.

In the region of small growth rate of drift waves,

$L
%*

*. 2,damp
!1 − ."6

!region I" !79"

there is no crossing of lines !71" and !77". Therefore, only
the solution Eq. !69" is allowed, and one has the solution

#̂ =
$L
%*

!region I" !80a"

with

Ŵ = 0. !80b"

The zonal flow is not excited, and the turbulence level is not
influenced by the zonal flow.

In an intermediate region,

. 2,damp
!1 − ."6

*
$L
%*

*. 2,damp
!1 − ."6

+
6

%*
Uc
2 !region II" ,

!81"

the boundary for the stationary zonal flow is given by Eq.
!73". The collisional damping controls the steady state solu-
tion. In region II, analytic forms of fluctuation level and
zonal flow amplitude are

#̂ =. 2,damp
!1 − ."6

!region II" !82a"

and

Ŵ =
$L
6
−

%*
6
. 2,damp

!1 − ."6
, !82b"

respectively. In this region, the zonal flow amplitude in-
creases as $L increases, but the turbulence level is un-
changed. The fluctuation level #̂2 is proportional to the col-
lisional damping rate of the zonal flow. This reproduces the
preceding result of theory and DNS observations.10,21,29

When the growth rate becomes larger,

FIG. 4. Domains in control parameters. !In this diagram, the time rate 6 is
treated as a constant parameter."

FIG. 3. Three cases for the solutions. Solid line indicates the marginal
condition for the zonal flow growth. Dotted lines denote those for the drift
waves for various values of linear growth rate. Dots indicate steady-state
solutions. If the drive of drift wave is weak #case I$, the steady state solution
is given by zero zonal flow. The intermediate case #II$ and strong drive case
#III$ are also shown.
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$L
%*

+. 2,damp
!1 − ."6

+
6

%*
Uc
2 !region III" . !83"

Equations !76a" and !76b" describes the balance of the zonal
flow. The self-nonlinear damping of the zonal flow domi-
nates the steady state. In a strongly unstable limit,

$L
%*

). 2,damp
!1 − ."6

, U ) Uc !84"

one has

#̂ =.$L
6

.Hk!
2"s
2

!1 − ."
!region III" !85a"

and

Ŵ =
$L
6
. !85b"

When the growth rate becomes larger, the zonal flow velocity
and the fluctuation level increase as $L increases.

Figure 4 summarizes the characteristic domains in the
parameter space. Figure 5 illustrates the wave amplitude #̂ or
(%k /%* and the zonal flow vorticity U /%* as a function of
the growth rate. Figure 5!a" illustrates the case in the pres-
ence of the collisional damping of the zonal flow. Three re-
gions appear.

3. Collisionless limit and upshift of excitation
boundary

Here, the problem of the upshift of the critical condition
in terms of the linear growth rate is discussed. #Here, the
assumption of the strong turbulence limit, Eq. !64" is not
employed.$ In the collisionless limit,

,damp→ 0, !86"

Eqs. !58" and !62" provide a steady-state solution as

(%k

%*
=
−

.Hk!
2"s
2%*

!1 − ."6
+.*.Hk!

2"s
2%*

!1 − ."6 +2 + 4*.Hk!
2"s
2

!1 − ."
$L
6
−

12

%*
2+

2
, !87"

if the growth rate exceeds a critical value

$L + $L,c /
!1 − ."6
.Hk!

2"s
2

12

%*
2 . !88"

Below this critical growth rate, $L*$L,c, we have

#̂ = 0. !89"

In the vicinity of the critical condition, $L-$L,c, Eq.
!87" provides

(%k

%*
=
1

%*
!$L − $L,c" . !90"

The fluctuation amplitude is calculated from the formula of
(%k, Eq. !87", by use of Eq. !64" or !65", depending on
whether it is in the weak turbulence regime or in the strong
turbulence regime.

From Eq. !90", one sees that the drift wave fluctuations
are, in the limit of vanishing collisional damping of the zonal
flow, sustained at finite levels when the growth rate of modes
$L exceeds a finite threshold value $L,c. This is a theoretical
explanation for the Dimits shift, which has been observed in

FIG. 5. The dependence of the amplitude of drift wave fluctuations #̂ !solid
line" zonal flow Ŵ !chained line" vs $L in the collisional case !a". !Here,
, /%* and 6 /%* are kept constant." Three regions appear. The decorrelation
rate of drift wave (%k /%* !solid line" and zonal flow vorticity .Ŵ !thick
broken line and thick dashed line" in the collisionless case ,=0 are given in
!b". Thin dotted line shows (%k /%* when zonal flows are not taken into
account. !6 /%* is kept constant." The drift wave amplitude #̂ is related to
(%k /%* as is shown in Eq. !64" or !65". Region I disappears, and the drift
waves are excited in region III.
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numerical simulations. Note that, in the limit of large growth
rate, $L)$L,c, Eq. !85a" is reproduced from Eq. !87". Figure
5!b" shows the collisionless limit. In this case, region I dis-
appears, and transition between regions II and III is seen.

4. Partition of energy between DW and ZF
Combining Eqs. !71" and !77", the amplitudes of the

zonal flow and drift waves are determined simultaneously.
Thus the partition of energy between the zonal flow and
wave turbulence is given. The partition of energy is evalu-
ated by the ratio VZF

2 / ṼDW
2 where VZF is the velocity of zonal

flow, k!qr
−1Vd.Ŵ, and ṼDW is the fluctuating E-B velocity

of drift wave fluctuations, k!k!
−1Vd#̂. This ratio is given as

VZF
2

ṼDW
2

=
k!
2

qr
2
Ŵ

#̂2
=

4
1 − .

k!
2

K0
2
Ŵ

#̂2
. !91"

In the strong turbulence limit in region III, one has a
relation from Eqs. !76a" and !76b", and the energy partition
is given as

VZF
2

ṼDW
2

=
4

.Hk!
2"s
2
k!
2

K0
2 . !92"

The flow energy and wave energy are proportional to each
other. In the strong turbulence limit, the energy can be con-
verted into flow energy more than to the wave fluctuation
energy if k!

2"s
2*4/.H holds.

C. Turbulent transport coefficient

The analysis in Sec. IV B gives an insight into the tur-
bulence and turbulent transport. The ion thermal conductivity
is deduced for the drift wave turbulence which is dressed by
zonal flows. The ion thermal conductivity is evaluated as1

7i = (%kkr
−2. !93"

By use of the dependence of (%k on the amplitude of drift
wave fluctuations, Eq. !64", 7i is evaluated, for the strong
turbulence limit, as

7i =
k!

kr
2"i

*vthi"i
2

Ln
+#̂ . !94"

The quantity !k! /kr
2"i"vthi"i

2Ln
−1 is the so-called gyro-Bohm

diffusion coefficient. Equations !80a", !82a", and !85a" show
the fluctuation amplitude as a function of the growth rate in
various regions, showing the effects of zonal flow.

The thermal conductivity in the case of the weak growth
rate of drift waves and strong damping of zonal flow #region
I$ is given from Eqs. !80a" and !94" as

7i =
$L
kr
2 !region I" . !95"

In this case, there is no zonal flow in the steady state, and
this agrees with the case of “bare” drift waves. When growth
rate of drift wave becomes larger !and yet the collisional
damping dictates the zonal flow" #region II$, the conductivity
is given as

7i =. 2,damp
!1 − ."6

%*
kr
2 !region II" . !96"

In region III, the saturation level of the zonal flow is
determined by the nonlinear process of zonal flow, not by the
collisional damping. Therefore the formula for the collision-
less limit is useful. In the collisionless limit, Eqs. !87" and
!93" provide the formula of thermal conductivity as

7III =
.Hk!

2"s
2%*

!1 − ."6
0− 1 +.1 +

4!1 − ."6
.Hk!

2"s
2%*

2 !$L − $L.c"

2
1%*
kr
2

!region III" . !97"

This form of 7III becomes finite, 7III802, for $L8$L,c. #Note
again that Eq. !97" does not depend on the limits !64" or
!65".$ In this collisionless case, in the vicinity of the nonlin-
ear onset condition $L,$L,c, Eq. !97" provides a simplified
expression of the transport coefficient as

7i =
$L − $L,c

kr
2 . !98"

One might be interested in more specific case studies. In
the framework that the wavelength is much longer than "s
and kr"s91, in small (%k-limit, the decorrelation between
drift wave and zonal flow is determined by the wave-bounce
frequency. We have

12 =
2"s

2k!
2qr

!1 + "s
2k!
2"2
VdU, !U + Uc" !99"

from Eq. !42", and the critical vorticity is given from Eq.
!75c" as

Uc = !2!1 − ."/.H"qrVd. !100"

At this critical vorticity, %b and 1 are evaluated as

1 =.4!1 − ."
.H

"sqr
1 + "s

2k!
2%*. !101"

Substituting Eq. !101" into Eq. !88", the critical growth rate
is evaluated as

$L,c =
4!1 − ."2

.2H2
qr
2

k!
26 . !102"

The boundary for the onset of turbulence has a dependence
as $L,c:qr

2k!
−26 with a numerical factor.

For practical usage, it is useful to have an interpolation
formula of 7i in these three regions. In regions I and II, 7i
may be fitted as

7i = 7I+II /
$L. 2,damp

!1 − ."6

$L +. 2,damp
!1 − ."6

%*

%*
kr
2 . !103"

This type of interpolation formula has been derived in, e.g.,
Ref. 40. A possible fitting formula for all three regions is
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7i = .7I+II
2 + 7III

2 ;!$L − $L,c" , !104"

where ;!$L−$L,c" is a Heaviside function, ;!$L−$L,c"=1
for $L+$L,c and ;!$L−$L,c"=0 for $L*$L,c. This formula
covers both the collisional regime !regions I and II" and the
self-nonlinearity regime !region III", including the property
like Dimits shift.

The thermal conductivity in the presence of zonal flow
in regions II and III, Eqs. !96" and !97", is much reduced, in
comparison with the case of “bare” drift waves !i.e., ZF ne-
glected", for which Eq. !95" is given. The reduction factor, in
regions II and III, R, can be defined accordingly.41 An ex-
ample of transport coefficient in explicit form is discussed in
the appendix.

D. Comparison with nonlinear simulation
1. Global parameter dependence

It is worthwhile to compare these theoretical results with
DNS. The result is tested to the result of a three-dimensional
nonlinear simulation of the ion-temperature-gradient !ITG"
mode turbulence based on two fluid models.13 In this simu-
lation, the dynamics of the electrostatic potential, ion tem-
perature, and ion parallel velocity are followed in toroidal
geometry with an assumption of adiabatic response for elec-
trons. Radial width of simulation domain is 120"i and a re-
alistic ITG dynamic was obtained by switching off the unre-
alistically high parallel fluid heat conduction. Parameters are
<n/2Ln /R=0.9, Ln /LTi=3.1, q=1.4 !q=0.7 for zonal flow
component in order to reduce the damping of zonal flow",
and s=0.8. !Ln and LTi are gradient scale lengths of density
and temperature, respectively and s: magnetic shear". Details
are explained in Ref. 13.

In the analytic theory, the ITG mode is characterized by
the modenumber

k!"i -
1
3 , !105a"

and

k! - kr. !105b"

This set of parameters, Eqs. !105a" and !105b", are chosen as
an input to this theory, and the level of zonal flow is analyti-
cally estimated, and is compared with the result of DNS.

In this section, we derive the relation between U and 7i
by employing Eq. !93", because these values of parameters
are reported in DNS results.13 It should be noted that this
comparison is possible in the collisionless limit, even if one
does not assume the strong turbulence limit or weak turbu-
lence limit, Eqs. !64" or !65". !The investigation42 has shown
that the relation between 7i and #̂ is in between the strong
turbulence limit !Eq. !64", 7i:#̂" and the weak turbulence
limit !Eq. !65", 7i:#̂2". Reference 42 reports that the case
there is closer to the weak turbulence limit." In units of
Vd"i

−1, the zonal flow vorticity is given by U=k!"i.WVd"i−1
where Vd is the diamagnetic drift velocity. By use of Eq.
!105a", we have

U =
1
3
.WVd"i−1, !106a"

and the relation

7i = 3
(%k

%*
!vthi"i

2Ln
−1" !106b"

is deduced from Eq. !93" by use of Eq. !105b".
For the case when the parallel flow damping has consid-

erable influence in modifying the quasilinear growth rate of
the zonal flow !such as the DNS parameter in Ref. 13", we
choose a representative value of .-1/2. For the parameters
Eqs. !105a" and !105b", one has H-2.5. With the help of the
relation for K0 in Refs. 21, 35 of K0-sk!, one has

qr , 0.1 "s
−1 !107"

for the wavenumber of the zonal flow. By use of these pa-
rameters, Eq. !100" provides an estimate

Uc - 0.085Vd"i
−1, !108"

at the boundary for the onset of turbulence, and the steady
state condition Eq. !74" is written as

(%k

%*
=

.2.5"s
Vd

.U2 − UcU =
.2.5"s
Vd

.U2 − 0.085Vd"s−1U
!109"

in the collisionless limit. Combining Eqs. !106b" and !109",
the relation between 7i and U, 7i!U", is derived as

7i
vthi"i

2Ln
−1 = 4.7

"i
Vd
.U2 −

0.085Vd
"i

U . !110"

It is emphasized again that the estimate of .-1/2 and Eq.
!105a" and !105b" are the input parameters, which are used
to derive the theoretical prediction Eq. !110".

Equation !110" is compared with DNS in Fig. 6. Solid
line shows the theory #Eq. !110"$ and dots denote the result
of DNS. A fairly good agreement between them is observed,
and theoretical results, e.g., Eq. !110", are not rejected. We
should note here that the fact that the cut-off frequency 1 is
introduced based on an order-of-magnitude estimate, and the
relation of the thermal transport coefficient #e.g., Eq. !93"$
has an ambiguity of numerical factor. Thus, one should not
expect an exact agreement of the DNS data and the theoret-
ical result Eq. !110", but should focus on the qualitative fea-
ture, such that the appearance of the cut-off at small drift
wave amplitude or an asymptotic relation 7i:U in the limit
of large turbulent transport. It should be noted that, strictly
speaking, Eq. !93" is not tested by Ref. 13. !In the series of
simulations in Fig. 6, the larger thermal conductivity is real-
ized for more strongly unstable cases. This suggests the in-
crement of the turbulence decorrelation rate of waves in con-
junction with the increment of thermal conductivity." The
final conclusion, whether this theory explains the DNS or
not, must be drawn after the test of Eq. !93" is made in DNS
under the condition of Fig. 6.
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2. Radial profile of nonlinear eigenmode

Before closing the analysis, the radial profile of the in-
duced zonal flow is also compared with the DNS. For the
parameters of interest, the model theory provides the radial
periodicity length as =-60 "i from Eq. !107". Figure 7 il-
lustrates the radial distribution of the vorticity associated
with the zonal flow, d4,y5 /dr, where 4¯5 denotes the aver-
age over the magnetic surface and r and y coordinates are
taken in the radial and poloidal directions, respectively. The
simulation result confirms this theoretical modelling. First,
the radial distribution of the vorticity shows the flattened
quasi-periodic form. This is an extreme case of relatively low
dispersion and high linear drive in the analytic result. Sec-
ond, the periodic length is about

= - 30 "i !111"

and is in the range of theoretical prediction. Third, the mag-
nitude of the vorticity is d4vy5 /dr-0.6Vd"i

−1. This value is
also in the range of theoretical prediction, U0-0.45Vd"i

−1 at

(%-%*. The agreement of the magnitude of zonal flow be-
tween theory and DNS is already explained in Sec. IV D 1.

V. SUMMARY AND DISCUSSION

In summary, we have developed a theory of nonlinear
evolution of the drift wave-zonal flow system. In the regime
where coherent structure of zonal flow survives much longer
than the decorrelation time of drift waves, the coherent struc-
ture of the zonal flow was analyzed. The self-nonlinear effect
of zonal flow realizes the stationary state. The coherent struc-
ture of zonal flow was studied by the perturbative expansion
with respect to the zonal flow amplitude. The nonlinear ra-
dial eigenmode was expressed in terms of elliptic integral.
This determines the characteristic scale length of the zonal
flow in nonlinear saturated stage. By treating the radial
wavelength of the zonal flow as a parameter, the renormal-
ization of the higher-order nonlinear effects was performed.
The driving force of the zonal flow was derived, in which
contributions of zonal flow vorticity at all orders were in-
cluded. By use of this renormalized dynamical equation for
the zonal flow, we studied the steady state system with both
the drift wave fluctuations and zonal flows. The energy par-
tition between them, the thermal conductivity, and the con-
dition for the onset of drift wave turbulence were analyzed.
The partition between the drift wave energy and zonal flow
energy was obtained as a function of the growth rate of drift
wave and the collisional damping of the zonal flow. A theo-
retical formula of the turbulent transport coefficient is de-
rived, which covers the weakly unstable regime !no zonal
flow", the moderately unstable regime !where the collisional
damping of the zonal flow dictates the transport coefficient",
and the strongly unstable case. The obtained formula extends
the previously derived formula to wider circumstances. The
condition for the onset of turbulence and turbulent transport
in the collisionless limit was also derived. This explains what
has been empirically known as Dimits shift in DNS. Formula
of the turbulent transport coefficient was also derived, in
which the screening effect by zonal flows is self-consistently
included. The theoretical result was compared with the DNS.
The energy partition between drift wave and zonal flow is
tested for the relation 7i!U". For a wide range of plasma
parameters that control the growth rate of ITG mode insta-
bility, good agreement is also observed. Thus, this analysis
captures some essential elements in the physics of the
DW-ZF system. This theory also gives a prototypical ex-
ample to understanding the mutual interaction between the
turbulent energy transport and generation of axial vector field
owing to the global gradient of plasma pressure.

Although this theory has shown some success in under-
standing of the nonlinear dynamics of DW-ZF system, fur-
ther research is necessary. One issue is the parameter range
of validity for the existence of the coherent structure of the
zonal flow. The coherent time is finite in reality, and must be
self-consistently determined by use of the statistical
theory.3,24–27,43 Systematic continuation of this model and the
BGK solution still needs further study. The decorrelation of
drift wave at the low level of drift wave turbulence, Eq. !41",
remains a very crude estimate in this article, and improve-

FIG. 6. Comparison of the relations 7i!U" for the steady state of ITG mode.
Zonal flow vorticity is measured in units of Vd"i

−1 and thermal conductivity
is in vthi"i

2Ln
−1. Theory !solid line" and DNS data !dots" are quoted from Ref.

13.

FIG. 7. Radial distribution of vorticity of zonal flow U in the DNS. Snap-
shot in the stationary state is shown. Origin of radius r0 is chosen at the
center of simulation box.
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ment is necessary. The other issue is the application of meth-
odology to various turbulence problems in actual experimen-
tal conditions. In both issues, future evolution of
understanding is expected.
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APPENDIX: A FORMULA OF TRANSPORT
COEFFICIENT

In this appendix, explicit forms of the transport coeffi-
cient and the Dimits shift are discussed for a practical use.

An analytic estimate for Drr has been given

Drr ,
1
B2

k!
2

$L
'#̃'2 !A1"

in the vicinity of the marginal condition (%k,$L !See, e.g.,
Sec. 3.2.2 of Ref. 6". It is given, in terms of the normalized
fluctuation amplitude, as Drr,!k!

2k!
−4"%*

2$L
−1#̂2. The growth

rate of the zonal flow energy has been introduced by the
definition 2Drrqr

2=6#̂2. That is, the time rate 6 is given as

6 ,
%*
$L

2 k!
2qr
2

k!
4 %*. !A2"

The Dimits shift is given by the critical condition that
satisfies Eq. !102", i.e.,

$L,c =
4!1 − ."2

.2H2
qr
2

k!
26 . !A3"

Eliminating 6 from Eqs. !A2" and !A3", at $L=$L,c, one has
an equation of the critical growth rate $L,c as

$L,c =
2.2!1 − ."

. H
qr
2

k!
2 %*. !A4"

For the least stable mode, qr is estimated by Eq. !57",

qr ,
.1 − .

2
K0,

this relation gives an estimate of $L,c,

$L,c =
!1 − ."2

.2. H
K0
2

k!
2 %*. !A5"

One estimate for K0=kr:

$L,c =
!1 − ."2

.2. H
kr
2

k!
2 %*. !A6"

For parameters .,1/2, $L,c is of the order of one-tenth of
%*.

Explicit forms are also derived for domains discussed in
Sec. IV B 2. One has the following expressions.

!a" Small growth rate limit:
In the case of weak instability, i.e.,

$L *
1

!1 − ."
k!
4

k!
2qr
2,damp !region I" , !A7"

the fluctuation level is given by

#̂ =
$L
%*

/ #̂I. !A8"

!b" Intermediate growth rate limit:
For the case of

1
!1 − ."

k!
4

k!
2qr
2,damp * $L * $L,c !region II" !A9"

the fluctuation level is given by

#̂ =
1

.1 − .

k!
2

k!qr
.,damp

%*

$L
%*

/ #̂II. !A10"

!c" Large growth rate limit
The transition from the collisional-damping-dominated

region #region II$ to the nonlinearity-dominated region is ex-
pected to occur at

1
.H"s

2k!
2,damp + $L,c * $L !region III" . !A11"

One has, from Eq. !87",

(%k

%*
,

.H"s
2k!
4

4!1 − ."qr
2*− 1

+.1 +
8!1 − ."qr

2

.H"s
2k!
4 *$L − $L,c

$L
++

-
$L
%*

/ #̂III. !A12"

The asymptotically-linear dependence on $L in this model is
recovered, and a suppression factor appears. The suppression
factor, which is induced by the co-existence of the zonal
flow, is approximately evaluated as ..H /2!1−.""sk!

2 qr
−1

-k!"s.
A similar argument is possible for the thermal conduc-

tivity. In regions I and II, a fitting formula is given as

7I+II =
$L.,

.$L
+.,

1
kr
2 , !A13"

where
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, =
1

!1 − ."
k!
4

k!
2qr
2,damp !A14"

denotes the impact of collisional damping of the zonal flow.
In region III, Eq. !93" and Eq. !A12" provide

7III =
.H"s

2k!
4

4!1 − ."qr
2*− 1 +.1 +

8!1 − ."qr
2

.H"s
2k!
4 *$L − $L,c

$L
++$L

kr
2 .

!A15"

A fitting in regions I, II, and III is

7i = 7fit / .7I+II
2 + 7III

2 ;!$L − $L,c" , !A16"

where ;!$L−$L,c" is a Heaviside function.
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